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Algebraic Quantization of Causal Sets
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A scheme for an algebraic quantization of the causal sets of Sorkin et al. is
presented. The suggested scenario is along the lines of a similar algebraization
and quantum interpretation of finitary topological spaces due to Zapatrin and this
author. To be able to apply the latter procedure to causal sets Sorkin’s ‘semantic
switch’ from ‘partially ordered sets as finitary topological spaces’ to ‘partially
ordered sets as locally finite causal sets’ is employed. The result is the definition of
‘quantum causal sets’. Such a procedure and its resulting definition are physically
justified by a property of quantum causal sets that meets Finkelstein’s requirement
for ‘quantum causality’ to be an immediate, as well as an algebraically represented,
relation between events for discrete locality’s sake. The quantum causal sets
introduced here are shown to have this property by direct use of a result from
the algebraization of finitary topological spaces due to Breslav, Parfionov, and
Zapatrin.

1. INTRODUCTION

An effective procedure has been developed for substituting a continuous
topological space, such as a bounded region in a spacetime manifold, by a
finitary one which was then seen to possess the structure of a partially ordered
set (poset) (Sorkin, 1991). With every such poset an algebra, the poset’s
incidence algebra, was subsequently associated (Breslav et al., 1999). Hence
finitary substitutes for continuous topologies enjoyed a purely algebraic repre-
sentation in terms of incidence algebras. Recently a quantum interpretation
was given to the latter algebraized finitary topological spaces and the whole
procedure was called ‘algebraic quantization of discretized spacetimes’
(Raptis and Zapatrin, 2000).

On the other hand, Sorkin has accounted for a significant change of
physical interpretation for the aforementioned posets from ones whose partial
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order encodes topological information as in Sorkin (1991) to ones whose
partial order stands for the causal, ‘after’ relation between events (Sorkin,
1989). Thus he and coworkers arrived at the notion of causal set (Bombelli
et al. 1987; Sorkin, 1989). The new interpretation also substituted the posets’
finitarity by the causal sets’ local finiteness property. Thus it seems inevitable
or at least natural that the incidence algebras associated with the topologically
interpreted posets inherit this causal interpretation from the ‘semantic switch’
advocated by Sorkin (1989). The resulting algebras may be coined ‘causal
incidence algebras’. Finally, if we give these algebras a quantum interpretation
as in Raptis and Zapatrin (2000), we are naturally led to ‘quantum causal
incidence algebras’. Then effectively we will have algebraically quantized
Sorkin et al.’s causal sets to ‘quantum causal sets’.

These quantum causal incidence algebras are presented here as sound
models of quantum causal sets. We support our claim by a result from Breslav
et al., 1999) that vindicates an insight of Finkelstein (1988) on how to model
causality in the quantum deep.

The paper is organized as follows: in Section 2 we recall some key
results from Sorkin (1991), essentially how a finitary substitute for continuous
topology has the structure of a poset. In Section 3 we recall from Breslav et
al. (1999) how to associate with every poset an algebra—the poset’s incidence
algebra. In Section 4 we briefly present Sorkin’s semantic switch from ‘posets
as finitary topological spaces’ to ‘posets as locally finite causal sets’ found
in Sorkin (1989), and thus define causal incidence algebras. In Section 5
we select from Raptis and Zapatrin (2000) some aspects of the quantum
interpretation of incidence algebras, hence lead to the structure of quantum
causal incidence algebras modeling quantum causal sets. In Section 6 we use
a result from Breslav et al. (1999) that supports the soundness of our algebraic
models of quantum causal sets. The conclusion at the end sum up our approach
to quantum causal sets.

2. ASPECTS OF FINITARY SUBSTITUTES

The essential result from Sorkin (1991) for our exposition here is the
equivalence between finitary substitutes of bounded regions of continuous
topological spaces and posets. Below we recall briefly this equivalence.

Assume a finite continuous topological space S, for instance, a bounded
region of a spacetime manifold. Let S be covered by a locally finite collection
8 of bounded open sets U in the sense that each of S’s points has an open
neighborhood that meets only a finite number of U’s in 8. Any two points
x, y of S are indistinguishable with respect to its locally finite open cover 8
if ∀U P 8: x P U ⇔ y P U. Indistinguishability with respect to this
subtopology 8 of S is an equivalence relation on the latter’s points and is
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symbolized by }. Taking the quotient S/} results in the substitution of S by
equivalence classes of its points whereby two points in the same equivalence
class are covered by (i.e., belong to) the same, finite in number, open neighbor-
hoods U of 8, thus are indistinguishable by it. Call the quotient space ^.

Now let x, y be points belonging to two distinct equivalence classes in
^. Consider the smallest open sets in the subtopology 8 of S containing x
and y respectively given by L(x) :5 ù{U P 8: x P U} and L( y):5ù{U P
8: y P U}. Define the relation → between x and y as follows: x → y ⇔
L(x) , L( y) ⇔ x P L( y). Then assume that x } y in the previous paragraph
stands for x → y and y → x. Now, → is a partial order on ^ and 6 has been
effectively substituted by the finitary ^ which is a T0 topological space with
the structure of a poset. Sorkin uses the finitary topological and partial order-
theoretic languages interchangeably exactly due to this equivalence between
T0 finitary substitutes and posets. For the future purposes of the present paper
we distill this to the following statement: in Sorkin (1991) a partial order is
interpreted topologically. We call it a ‘topological partial order’ and the poset
encoding it a ‘topological poset’.

3. ASPECTS OF INCIDENCE ALGEBRAS

The aspect of Breslav et al. (1999) that is of significance here is that with
every topological poset P an algebra V(P)—the poset’s incidence algebra—is
associated, so that the order-theoretic encodement of finitary substitutes has
an equivalent algebraic description in terms of incidence algebras. V(P) as
a linear space, in Dirac’s ket-bra notation,2 is defined as

V(P) 5 span{.p&^q.:p → q} (1)

with product between two of its ket-bras given by

.p&^q. ? .r&^s. 5 .p&^q.r&^s. 5 ^q.r& ? .p&^s. 5 H.p&^s. if q 5 r
0 otherwise

(2)

In a so-called ‘spatialization procedure’ Breslav et al. brought into 1–1
corespondence the elements p of a poset P and the primitive ideals Ip of its
incidence algebra V(P) by defining the latter as

Ip 5 span {.q&^r.: .q&^r.Þ.p&^p.} (3)

and thus defined the primitive spectrum of V(P) as 6 5 {Ip}.

2 The reader can also refer to the paper of Zapatrin (1998) for an early and detailed exposition
of incidence algebras associated with topological posets. However, incidence algebras were
not presented there in Dirac’s ket-bra notation, so in this paper we solely refer to Breslav et
al. (1999), which first exposed them in such a way.
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Then the Rota topology is defined on 6 as being generated by the
following relation r between any two primitive ideals Ip , Iq P 6:

IprIq ⇔ IpIq (ÞIqIp) ,
Þ

Ip ù Iq (4)

with IpIq their product ideal.
The central question raised and settled in Breslav et al. (1999) is when

the Rota topology on 6 of V(P) is the same as the finitary one when the
poset P, whose incidence algebra is V(P), is the finitary substitute for a
continuous topological space, a topological poset, as in Section 2. The answer
to this question provided an invaluable clue which is used in Section 6 for
showing that a quantum causal incidence algebra has an important property,
deriving from considerations of discrete locality, that any sound algebraic
model of ‘quantum causality’ should possess. Thus we postpone its presenta-
tion until Section 6. First we need to make contact with causality by following
Sorkin’s paradigm of reinterpreting posets from topological to causal.

4. SORKIN’S CAUSALIZATION OF POSETS

In a change of physical interpretation, ultimately of physical theory,
Sorkin stopped thinking of posets as encoding the topological information
of finitary substitutes of continuous topological spaces and reinterpeted the
partial order → between their elements as the causal, ‘after’ relation between
events. In a revealing paper (Sorkin, 1989) he recalled this semantic switch
of his as follows:

. . . Still, the order inhering in the finite topological space seemed to be very
different from the so-called causal order defining past and future. It had only a
topological meaning but not (directly anyway) a causal one. In fact the big
problem with the finite topological space was that it seemed to lack the information
which would allow it to give rise to the continuum in all its aspects, not just in
the topological aspect, but with its metrical (and therefore its causal) properties
as well . . . The way out of the impasse involved a conceptual jump in which the
formal mathematical structure remained constant, but its physical interpretation
changed from a topological to a causal one . . . The essential realization then was
that, although order interpreted as topology seemed to lack the metric information
needed to describe gravity, the very same order reinterpreted as a causal relation-
ship, did possess information in a quite straightforward sense . . . In fact it took
me several years to give up the idea of order-as-topology and adopt the causal
set alternative as the one I had been searching for . . .

This significant change of the physical semantics of the same mathemati-
cal structure, the poset, amounted to the latter being interpreted by Sorkin
and coworkers as a causal set: “a locally finite set of points endowed with a
partial order corresponding to the macroscopic relation that defines past and
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future” (Bombelli et al., 1987; Sorkin, 1989). Local finiteness was defined
as follows: use → of a poset P, interpreted now as a causal relation on the
causal set, to redefine L(x) of Section 2 for some x P P as L(x) 5 {y P P:
y → x}, and dually V(x) 5 {y P P: x → y}. Now, L(x) is the ‘causal past’
of the event x and V(x) its ‘causal future’. Local finiteness then requires the
so-called Alexandroff set V(x) ù L( y) to be finite for all x, y P P such that
x P L( y). In other words, only a finite number of events ‘causally mediate’
between any two events x, y, with x → y, of the causal set P. Roughly, the
finitarity of the topological posets of Section 2 translates by Sorkin’s semantic
switch to the local finiteness of causal sets, although it must be stressed
that the physical theories that they support, the topological discretization of
manifolds in Sorkin (1991) and causal set theory in Bombelli et al. (1987)
and Sorkin (1989), respectively, are quite different in motivation, scope and
aim (Sorkin, 1989, 1991).

Here we follow Sorkin’s example and advocate a similar semantic switch
from ‘incidence algebras V(P) associated with topological posets P’ to ‘inci-
dence algebras V(P) associated with causal sets P’. That is to say, we change
physical meaning for the arrow p → q encoded in the ket-bra notation in (1)
from topological to causal. Thus the proposed change of meaning is from
‘topological incidence algebras’ to ‘causal incidence algebras’. However, in
the new algebraic environment of incidence algebras, apart from the →
structure of P, which is effectively encoded into the ket-bra symbol and the
product of ket-bras in V(P) (2), a new element of structure absent from P,
namely superposition 1 of ket-bras in V(P), enables us to also impart quantum
interpretation to V(P) no matter whether the latter is of topological or of
causal nature. We present elements of this theory next.

5. QUANTIZATION OF INCIDENCE ALGEBRAS

In Raptis and Zapatrin (2000) a quantum interpretation to topological
incidence algebras was given; thus the authors arrived at an algebraically
quantized version of Sorkin’s (1991) discretized spacetimes. The reader is
referred to Raptis and Zapatrin (2000) for technical details. Below we only
collect from it the evidence supporting this quantum interpretation of inci-
dence algebras.

Let P be the poset corresponding to a finitary substitute of a continuous
topological space in the sense of Sorkin (1991). Let V(P) be the incidence
algebra associated with it and defined as in Section 3, Eq. (1); then:

(a) The algebraic operation 1 between ket-bras in V(P) naturally enjoys
a physical interpretation as coherent quantum superposition.

(b) The split of any incidence algebra V(P) into a commutative subalge-
bra ! of grade-zero vectors ! 5 V0 5 span{.p&^p.: p → p} and a linear
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subspace 5 5 span {.p&^q.}P,q 5 V1 % V2 % ??? of vectors3 with grade or
degree $1 as V 5 ! % 5, naturally affords a physical interpretation as ‘the
algebra of quantum spacetime states’4 and ‘the space of quantum dynamical
transition processes between them’5, respectively.

(c) The quantum interpretations given in (a) and (b) above seem all the
more plausible when one also interprets Sorkin’s ‘inverse limit’ of finitary
substitutes P to the continuous manifold space M that they approximate as
a correspondence limit in the quantum sense of Bohr. Then ! is expected
to decohere to the classical commutative algebra of spacetime coordinates
parametrizing events (classical ‘position’ vector states), and 5 to the classical
cotangent Lie algebra of kinematical derivations of them (classical ‘momen-
tum’ covector states).

What is of importance here is to borrow the quantum interpretation of
topological incidence algebras from Raptis and Zapatrin (2000) and apply it
to the causal incidence algebras of the previous section. Doing so, we arrive
straightforwardly at the concept of ‘quantum causal incidence algebras’ mod-
eling ‘quantum causal sets’. The soundness of this model of quantum causal
sets is shown next.

6. LOCAL ALGEBRAIC QUANTUM CAUSALITY

Finkelstein (1988) intuited that a sound quantum model of causality
should essentially meet the following two conditions:

(a) Be algebraic and have a quantum interpretation for this algebraic
structure.

(b) What is algebraized should not be the classical causality relation,
which, like the one between the elements of Sorkin’s causal sets, is usually
modeled by a partial order, which in turn, being transitive (Bombelli et al.,
1987; Sorkin, 1989), is nonlocal (mediated). Rather, a local (immediate)
version of it should be algebraically quantized. That is, the physical causal
connection between events in the quantum deep should be one connecting
nearest neighboring events. Symbolically, → is such that (x → y) and ∃⁄ z: x
→ z → y.

Causal net theory was proposed as a local, discrete, algebraic, and
quatum interpreted alternative to Sorkin’s causal set theory that satisfies the
two demands above (Finkelstein, 1988). The discrete locality aspect of causal
net theory is that it can be thought of as causal set theory constrained to
Alexandroff neighborhoods V(x) ù L( y)(x → y) of zero cardinality. Its

3 Vn is defined as Vn 5 span {.p&^q.}deg.p&^q.5n, with the degree (or grade) deg of .p&^q. standing
for ‘the difference of cardinalities of p and q’ (Raptis and Zapatrin, 2000).

4 Called ‘stationaries’ in Raptis and Zapatrin (2000).
5 Called ‘transients’ (V1) and ‘paths’ (Vi; i $ 2) in Raptis and Zapatrin (2000).
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quantum algebraic aspect is that it represents causal relations between events
algebraically with a quantum interpretation for this algebraic structure. In
brief, causal nets are sound models of ‘quantum causal spaces’. In the present
paper, too, quantum causal incidence algebras are proposed as models of
quantum causal sets and they plainly meet Finkelstein’s requirement (a).
Below we show how they also satisfy (b) in a straightforward way.

Recall the question posed at the end of Section 3, namely, when the
topology encoded in a poset P that substitutes a continuous topology à la
Sorkin (1991)6 is the same as the Rota topology of its associated incidence
algebra V(P) which is generated by the relation r in (4). To answer it, let
us recall from Raptis and Zapatrin (2000) how a poset P may be associated
with an incidence algebra V .

Elements of the poset P(V) are taken to be the irreducible representations
of the algebra V . Building the partial order on P(V) consists of two steps.
First, the nearest neighbor connections p → q are defined according to the
following rule: let p, q be two irreducible representations of V; then denote
by p0, q0 their kernels:

p0 5 p21(0); q0 5 q21(0)

which are primitive ideals in V . Then, the nearest neighbors p → q are
defined as follows:

p → q ⇔ p0q0 Þ p0 ù q0 (48)

where p0q0 denotes the same as the product ideal IpIq and p0 ù q0 as the
intersection ideal Ip ù Iq in (4). The resulting partial order on the set P(V)
is obtained as the transitive closure of the nearest neighbor relation → in
(48). The topology associated with this partial order is referred to as the
Rota topology.

Breslav et al. (1999) proved that the Sorkin topology is the same as the
Rota topology exactly when → in (48) is identified with r in (4), that is to
say, when Rota’s relation r is regarded as the transitive reduction of Sorkin’s
partial order relation →. Since we have interpreted → causally, we can restate
this result in a positive way in our causal context as follows: the ‘immediate
causal connection’ r (between points of the primitive spectrum) is encoded
more directly in the incidence algebra V of a finitary poset P than is its
transitive closure.7 Thus, causal incidence algebras are sound models of local
causal sets and, in extenso, quantum causal incidence algebras of quantum
causal sets, according to Finkelstein’s two basic requirements presented
above.

6 We may call it ‘the Sorkin topology’.
7 P being interpreted as a causal set as in Section 4.
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7. CONCLUSION

We may sum up the algebraic quantization procedure leading to quantum
causal incidence algebras in the following diagram:

q
t-posets/incidence algebras → q-t-posets/incidence algebras

c↓ ↓c
q

c-posets/incidence q-c-posets/incidence algebras→
algebras

picturing from the upper left corner the processes of ‘(c)ausalization’ (causal
reinterpretation à la Sorkin) of (t)opological posets (t-posets) and their topo-
logical incidence algebras to causal sets (c-posets) and their causal incidence
algebras, followed by ‘(q)uantization’ (quantum interpretation according to
the Raptis–Zapatrin scheme) to quantum causal incidence algebras modeling
quantum causal sets (q-c-posets). One may equivalently follow the other
route and first quantize topological posets and their topological incidence
algebras to quantum topological posets (q-t-posets) and their quantum topo-
logical incidence algebras and then causalize them to quantum causal sets.
In this paper we took the c-followed-by-q route.
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